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1. INTRODUCTION
1.1 Issues in Discriminant Transportability

Recent seismological discrimination studies (e.g., Ryall, et al, 1996;
Baumgardt, 1995) have demonstrated that certain waveform feature meas-
urements can be used to identify very small seismic events. The most com-

monly studied discriminant is the regional P/S amplitude ratio, where P can

be Pn or Pg and S is typically Lg or Sn. Generally, these ratios are smaller
for earthquakes than nuclear explosions. Mine blasts tend to have higher
ratios than earthquakes but not as high as nuclear explosions. Sometimes,
“earthquake like” Pn/Lg ratios have been observed for mine blasts (e.g.,
Baumgardt, 1995).

Small event discrimination with waveform discriminants will be a
required capability for monitoring a small or zero-yield Comprehensive
Test Ban Treaty (CTBT). Typically, such events will have seismic local
magnitudes as low as 2.5 that may be too small to be recorded teleseismi-
cally at a large number of stations, and perhaps only one or two stations
will detect the event at regional distances. Because small events may have
poorly constrained locations and depths due to the small number of detect-
ing stations, waveform features from single-station recordings at regional
distances may be the only information available for the identification of
small events.

The approach to worldwide event identification in the development
of the Intelligent Seismic Event Identification System (ISEIS) (Baumgardt,
et al, 1991) has been to systematically measure many different waveform
features for seismic events recorded in different regions of the world and
to save the features in an Oracle database. Then, when new events from
these regions or new regions of the world need to be identified, the old
features from the previously studied known events can be called up from
the database and compared with the new features.

This method of “inter-region” event feature comparisons for event
identification is usually considered to be severely affected by differences in
the geology of the propagation paths and the tectonics of the regions and



perhaps site effects under the different sensors. The issue of “discriminant
transportability” (Baumgardt and Der, 1995; Baumgardt, 1995) concerns

whether or not one can use discriminants trained in one region, recorded at

seismic stations in that region, to identify events in other regions with per-

haps completely different stations. In spite of the differences in stations and ;
propagation paths, inter-region comparisons have revealed strong similar-
ity of regional P/S amplitude ratio waveform features between events of
the same source type but in different regions recorded at different stations.
This indicates that these discriminants may be very robust when trans-
ported from one region to another.

This report describes continued investigation of discriminant trans-
portability with application to seismic discrimination in the Middle East.
Understanding regional phase propagation and discriminants for seismic
events in the Middle East poses a major challenge to developing the capa-
bility for monitoring the Comprehensive Test Ban Treaty (CTBT) and
Non-Proliferation Treaty (NPT). Seismic monitoring of events in the Mid-
dle East may be more complicated than in other regions because of two dif-
ficulties: (1) The extreme geologic and tectonic complexity of regional
propagation paths in the region needs to be understood and calibrated in
order to use seismic waveform features for discrimination. (2) Although
earthquakes occur in abundance in the tectonic belts of the Middle East,
discrimination studies in this region are necessarily limited by the paucity
of known explosive sources in the region.

The approach to the first problem has been to assemble a database of
seismic events, consisting mostly of earthquakes, for the key countries of
interest (Egypt, Jordan, Israel, Iran, Iraq) and to investigate the character-
istics of regional phase propagation in the region. Of key interest in this
study is the variation of excitation of high-frequency regional shear waves,
principally Sn and Lg, relative to regional compressional waves, mainly Prn
and Pg. Variations and anomalies in these features are interpreted in terms
of geological characteristics of the propagation path. Of particular interest
has been the observation of the blockage of Lg, a key regional phase for a
number of different discriminants.




To address the second problem, seismic waveform-feature discrimi-
nants have been extracted, using the ISEIS discrimination system, for pre-
sumed earthquakes recorded at stations in the Middle East. As much as pos-
sible, these features are compared with those for known or presumed ex-
plosions in the region. However, because only limited numbers of such
events, in particular, nuclear explosions, are available for the region, the
earthquake features must be compared with the same features for explo-
sions in other regions which have been stored in the ISEIS database.

1.2 Data Sources

The data-collection effort for this study has primarily focused on
earthquakes in Israel, Jordan, Egypt, Iran, and Iraq. An Oracle database of
seismic waveforms has been collected from the following data sources:

(1) Iranian Long-Period Array (ILPA) - This array operated during the
1970s and included broadband borehole KS36000 seismometers (Texas
Instruments, 1977). A database assembled by Lori Grant of Multimax
(Grant et al, 1996), and analyzed by Flori Ryall to identify the principal
regional phases, has been imported into the ISEIS database. The initial
focus has been on seismic events in the Caspian region, in particular,
propagation paths which cross known Lg-blockage region of the South
Caspian Basin. The characteristics of other paths within and around Iran
have also been investigated.

(2) Single station data from Mednet and IRIS Stations - The key Mednet
station of interest has been Kottamya, Egypt (KEG) because of its
proximity to the planned location of the LUXESS array in eastern
Egypt. This station is in an advantageous location to record events in
many different regions of interest in the Middle East. Signals at this sta-
tion are also compared with those recorded at the IRIS station at Alibek,
Turkmenistan (ABKT) for common events in the Zagros Mountains re-
gion of Iran.




(3) Previously computed data for Scandinavian Arrays and WMQ - All the
events studied in the Middle East are earthquakes. For discrimination
studies, the features for these events can be compared with those previ-
ously computed for mine blasts in Scandinavia, recorded at the ARCESS
array, and earthquakes in China and nuclear explosions in Russia re-
corded at Urumchi (WMQ).

1.3 Report Overview

Section 2 reviews the problem of Lg blockage, with an analysis of
data from the Caspian region recorded at the IR1 sensor of ILPA. First,
observations of Lg blockage in the Barents Sea are discussed, which
Baumgardt (1991) originally explained as being caused by “sedimentary
basin capture” of the Lg shear waves within the Barents sedimentary basin.
The ready availability of crustal-structure data for Eurasia from geo-
graphic information systems (GIS) (Fielding et al, 1993) allows compara-
tive interpretation of individual propagation-path cross sections for
blocked- and unblocked-Lg propagation paths, and this analysis clearly
shows that the perturbation of the crustal “granitic layer” by sedimentary
basins in the continents results in partial and complete Lg blockage. This
same analysis is also applied to propagation paths across the Caspian Sea to
the IR1 sensor, which shows that the “sedimentary basin capture” mecha-
nism may explain the well-known Lg blockage in the Caspian Sea region.




Section 3 presents the result of the characterization study of Middle
Eastern earthquakes recorded at the Mednet station at Kottyama, Egypt
(KEG) and Alibek, Turkmenistan (ABKT). Earthquakes in the Jor-
dan/Dead Sea transform region are well recorded at the KEG station and
augment the local database for Galilee for stations inside Israel (Grant et al,
1996). This study of these events reveals the presence of Lg blockage in the
Levantine sedimentary basin of the Mediterranean Sea and an apparent
tradeoff in the blockage of Sn and Lg. Also, earthquakes in the Gulf of
Aqgaba and Sinai are well recorded at KEG. Gulf of Aqaba earthquakes
show evidence of water-column reflections which may be considered as an-
other method for identifying shallow earthquakes beneath water-covered
areas. Events to the south in Ethiopia and in the Red Sea region are also re-
corded at KEG but with limited bandwidth interpreted in terms of high
heatflow in the region. Finally, recordings of Pn and Lg at KEG and
ABKT are compared for common events in the Zagros Mountains of Iran,
which reveal interesting patterns in Pn/Lg ratio which may be caused by
either propagation path differences or source mechanism radiation pattern
effects.

Finally, Section 4 presents the summary and conclusions, including
plans for future research.




2. CONTINUED INVESTIGATION OF LG BLOCKAGE

Lg “blockage” is defined as the sudden disappearance of the phase
along a particular propagation path that is not explainable by anelastic at-
tenuation or geometric spreading. The regional phase, Lg, propagates in
the continents and is blocked when it crosses continent/ocean margins
(Zhang and Lay, 1995) and does not propagate in ocean basins. However,
Lg also has been known to suddenly disappear in certain continental re-
gions (Baumgardt, 1990; Baumgardt, 1991). It is important to understand
the causes of Lg blockage in continental cratons because of the importance
of the regional phase in test-ban treaty monitoring, particularly in seismic
event identification.

To explain Lg blockage in the continents, lateral heterogeneities in
crustal structure, particularly variations in the thickness of the crust (e.g.,
Kennett, 1986), presence of oceanic crust (e.g., Kadinski-Cade, et al,
1981), or strong anelastic attenuation (Ruzaikin, et al, 1977; Ni and
Barazangi, 1983) are often invoked. This section presents observational
evidence that high-frequency Lg may propagate primarily in the upper part
of the continental crust and that lateral heterogeneities in shallow structure
can explain Lg blockage. In the case of the Eurasian continental craton, Lg
blockages appear to be associated with deep sedimentary basins
(Baumgardt, 1991). As an explanation for Lg blockage in sedimentary ba-
sins, Baumgardt (1991) proposed an explanation called basin capture.
Ray tracing experiments show that much of the Lg wavetrain can be mod-
eled as SV type waves reverberating at near critical angles in the continen-
tal granitic layer. If the granitic layer is partly or completely replaced by
an enclosed low-velocity sedimentary basin, the SV waves, composing Lg,
coming out of the granitic layer into the basin are refracted to steeper an-
gles and reverberate many times in the basin. This extends the Lg wave
train, delays the arrivals, and essentially kills them by attenuation caused by
the multiple bounces in the basin and possibly low-Q in the sediments. Lg
blockage of this kind has been observed in the Barents Sea, the north and
south Caspian Basins, the Timan-Pechora Basin, and basins around the
Urals (Baumgardt, 1991).




Two regions of Lg blockage in Eurasia, the Barents Sea Basin and
Caspian Basins, are studied and interpreted in terms of the sedimentary ba-
sin blockage model of Baumgardt (1991) as an explanation for Lg blockage
in these regions. The method is to examine crustal cross sections, derived
from the on-line GIS databases for Eurasia made available by Cornell
(Fielding, et al, 1992), for the blocked and unblocked paths, and to look
for differences between the two paths. This method assumes that the pri-
mary energy of regional phases propagates in the diametral plane from
source to receiver and that the crustal cross sections along the source-
receiver path, obtained from the GIS databases, are accurate representa-
tions of the crustal structure along these paths. This analysis shows that the
main difference between blocked and unblocked paths for many of these
regions resides in the upper crust, and Lg blockage in these continental re-
gions can be explained by shallow crustal heterogeneity.

2.1 Lg Blockage in the Barents Sea Revisited

The Lg blockage the Barents Sea for nuclear explosions on Novaya
Zemlya, recorded in Norway, was first identified by Baumgardt (1990)
and studied in more detail by Baumgardt (1991). To demonstrate the
blockage explicitly, two paths are compared in the region from a Kola
Peninsula Soviet PNE detonated in the 1972 and recorded at the NORSAR
array with a Novaya Zemlya explosion detonated in 1988 recorded at the
ARCESS array. Figure 1(a) shows the propagation paths for these two
explosions superimposed on an image map basement depth produced using
data from the Cornell GIS database for Eurasia (Fielding et al, 1992).
Figure 1(b) shows the cross sections for the two paths.

These two paths are very similar in that they are in the same region
and cover about the same distance. There are some variations in Moho
depths in the region in that the crust thickens by about 10 km along the
Kola-to-NORSAR path. The most significant difference in the two paths, as
most evidenced in Figure 1(b), is the presence of the Barents Sea in the
path from Novaya Zemlya to ARCESS. The Barents Sea contains a water
layer and an enclosed sedimentary basin with sediment thicknesses reaching
15 to 20 km.
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Figure 2 shows a comparison of the ARCESS (top) and NORSAR
(bottom) waveforms for the two events. Both traces have been bandpass
filtered from 0.6 to 3.0 Hz to eliminate noise and differences in the
NORSAR and ARCESS recording instrumentation. The ARCESS recording
has no apparent Lg at the expected arrival time for the 3.5 km/sec Lg.
However, a strong Lg was recorded from the Kola Peninsula PNE.

Figure 3 compares the same two waveforms but after filtering in
the 6 to 8 Hz band. This comparison reveals that the Sn is well recorded at
high frequency coming from the Novaya Zemlya nuclear explosion re-
corded at ARCESS but considerably weaker for the Kola PNE recording at
NORSAR. The strength of the Sn waves from Novaya Zemlya at high fre-
quency is remarkable given the fact that the event is a nuclear explosion,
although the Pn energy is still much greater. For example, in a study of the
31 December 1993 Novaya Zemlya event (Baumgardt, 1993; Ryall, et al,
1996), Novaya Zemlya explosions could be easily discriminated from
earthquakes and mine blasts because of their high Pn/Sn ratios at high fre-
quency. In theory, nuclear explosions are pure explosive sources and
should excite little intrinsic shear wave energy other than that derived from
P -to-S mode conversions. The large shear waves produced by the Novaya
Zemlya nuclear explosions may have resulted from induced tectonic ef-
fects, such as block motions or tectonic release, or from strong P-to-S
mode conversions from the complex topography of the island. Later, an
alternative shear-wave energy balance hypothesis will be discussed as a pos-
sible cause of large Sn waves for paths where Lg is blocked.

The cause of the Lg blockage for Novaya Zemlya explosions may be
found in the comparison of the crustal characteristics for the blocked and
the unblocked paths. Figure 1(b) shows a comparison of the crustal cross
sections for the two paths taken from the Cornell database (Fielding, et al,
1993). The path from Novaya Zemlya to ARCESS, shown at the top,
crosses the Barents Sea which contains deep sediments with depths reaching
20 km. The path from the PNE to NORSAR crosses a relatively uniform
crust although the Moho deepens by about 15 km. As originally suggested
by Baumgardt (1990), the Lg blockages commonly observed from Novaya
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Zemlya at ARCESS appear to be related to the presence of the sedimentary
basin.

Baumgardt (1991) showed how this blockage could result using
raytracing experiments. Teng and Kuo (1993) have modeled the blockage
by means of finite element method to synthesize full-wave Lg waveforms.
They showed that an enclosed basin of low velocity sediments in the grani-
tic layer of the crust was sufficient to block Lg. Jih (1995) considered a va-
riety of models, including sedimentary basin/crustal pinchout models like
that shown in Figure 1(b), and theoretically demonstrated not only Lg
blockage but also the Sn-to-Lg mode conversion (early Lg) which was also
observed associated with Lg blockage (Baumgardt, 1991). Therefore, Lg
waves will be partially or completely blocked along paths crossing an en-
closed basin containing thick low-velocity sediments.

2.2 Caspian-Sea Lg Blockage - Evidence from the ILPA Data
Set

A new data set has recently been made available by Lori Grant of
Multimax of seismic events recorded at the Iranian Long Period Array
(ILPA), for seismic events in the region of the Southern Caspian Sea
(Grant et al, 1996). The KS36000 seismometers of ILPA were primarily
designed for long-period seismic recording. However, ILPA also recorded
in the short-period band to 10 Hz Nyquist (Texas Instruments Report,
1977). This region was previously studied by Sikharulidzhe (1964), as re-
ported by Shishkevish (1979), who observed no propagation of Lg for
paths across the central and southern parts of this region. Kadinsky-Cade et
al (1981) attributed Lg blockage in this region to the presence of deep oce-
anic crust in the region. However, the basin-capture idea discussed earlier
can also explain the blockage.

Figure 4(a) shows locations of seismic events with Lg propagation
paths to ILPA which cross the central and southern Caspian Basin. A rec-
ord section of vertical component waveforms from the first ILPA channel
(IR1) is plotted in Figure 5. The 18 December 1978 event, at a distance
near 1400 km, is a nuclear explosion in the Azgir region north of

12
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Figure 4: Maps showing progation paths for events around the Caspian Sea recorded at sensors
in the ILPA array. (a) Events whose propagation paths cross the South Caspian Sea Basin. (b)
Caucasus and Northern Iran Events whose path do not cross the South Caspian Sea Basin.
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the Caspian Sea. Also, the 16 November 1978 event looks explosion-like
because it has a large Pn wave and a small Sn wave, although there is no
record that this event is an explosion. The other events appear to be earth-
quakes because they are located in the Caspian Sea and generally have
larger Sn waves than Pn waves.

The waveforms in Figure 5 contain Pn and Sr arrivals. The dashed
line in Figure 5 indicates the expected arrival time of the Lg but no clear
arrivals are apparent at the indicated time of Lg. For these paths, Lg
propagation has been blocked.

Figure 4(b) shows paths for other events, recorded at ILPA, but
which do not cross the Caspian Sea. Figure 6 shows the record section of
the ILPA (IR1) recordings of these events. These waveforms are distinctly
different than those in Figure 5 in that they contain significant energy at
the expected arrival time of Lg. Also, these events produced much stronger
Pg and coda waves than the events in Figure 5. The greater complexity of
these waveforms may be due to the increased complexity of the propaga-
tion paths, since many of the paths cross the Caucasus and the thrust belts
of northern Iran.

To explore more closely the differences in the blocked and un-
blocked paths, Figure 7 shows a comparison of waveforms for two such
events and the crustal cross sections for the two propagation paths. The
West Caspian earthquake (16 November 1978) is the event with the blocked
path and the South Caucasus earthquake (22 August 1978) is the unblocked
path.

Figure 8 shows a black-and-white rendering of a color image of the
topography (top), basement depth (middle), and Moho depth (bottom). The
white areas on these maps indicate large values. It can be seen clearly that
the southern Caspian is underlain by an enclosed sedimentary basin with
sedimentary thicknesses approaching 30 km. This region also has thickened
crust, to 50 km, as well as the regions of thicker crust to the west and south
of the Caspian.
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both Pg and Lg are strong, but Pn is emergent and Sn is usually not oberved.
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Figure 8: Maps of topography (top), basement depth (middle), and Moho depth (bottom) for the
Caspian region. The two lines correspond to the cross section shown in Figure 9.
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Figure 9 shows a comparison of the cross sections and waveforms for the
blocked and unblocked paths. Note that the blocked path from the West
Caspian earthquake just skirts the western edge of the southern Caspian Ba-
sin that is an enclosed sedimentary basin, with sediments reaching 12 km
thickness in this region. The unblocked path clearly misses the sedimentary
basin.

2.3 Caspian Region Earthquakes and Explosions

Finally, the differences between the only known nuclear explosion in
this data set, the December 18, 1978 nuclear blast, an earthquake and the
unusual November 16, 1978 event in Figures 6 and 9 will be examined.

Figure 10 shows a bandpass filter analysis applied to the data for
the Caucasus Earthquake of August 22, 1978 discussed above. The path for
this event is the dashed line shown in Figure 8. This event has signals in
the unfiltered or low frequency seismograms, but the signals die off
quickly with frequency above 3 to 4 Hz. The Lg is obviously low fre-
quency, since it does not appear at all on filtered traces above 2 Hz. In
contrast, the filtered nuclear explosion, shown in Figure 11, has strong
signals at frequencies up to the 6-to-8 Hz band. Also, notice that the Sn
phase has significant energy at frequencies up to 4 to 6 Hz.

Thus, even though Lg is blocked along this path, shear-wave energy
is clearly produced by the explosion and propagates in the form of Sn
waves. As was observed in the case of nuclear explosions in Russia (Kola
Peninsula and Novaya Zemlya) recorded in Scandinavia at ARCESS, where
Lg waves are also blocked by a sedimentary basin, large Sn signals are ap-
parent at high frequency. However, in contrast to earthquakes, the nuclear-
explosion Pn amplitude exceeds the Sn amplitude at all frequencies but es-
pecially at high frequency. So, even for blocked Lg paths, nuclear explo-
sions and earthquakes can be discriminated using high-frequency Pr/Sn
amplitude ratios.

Finally, Figure 12 shows the bandpass filter analysis applied to the
November 16, 1978 event, shown as the “blocked Lg” example in Figure
9. By all accounts, this event appears to be an earthquake. Two catalogs,
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NEIS and the Soviet Earthquake Catalog (SEC) (provided by William
Leith), report the source parameters for this event on November 16, 1978,
as follows:

NEIS Latitude - 43.499N, Longitude - 46.623 E, Origin Time -
5:46:9.48, mb = 3.9

SEC Latitude - 43.6 N, Longitude - 47.0 E, Origin Time - 5:46:15,
K=09.

These two locations appear to be for the same event, and since the Soviet
catalog only reports earthquakes, the November 16, 1978 event has been
identified as an earthquake. However, the filter analysis shows a very
similar pattern to that in Figure 11 for the nuclear explosion, notably the
strong Pn energy compared with the Sn energy at the higher frequencies.
Pn can even be observed in the 8 to 10 Hz band. This “lonesome Pn” ob-
servation at high frequency is a characteristic signature of an explosion.
However, there is no known record of a nuclear explosion on that day, and
no known nuclear explosions have occurred in that region west of the Cas-
pian. Although the accuracy of the event’s location may be questionable,
the Pn-to-Sn time interval is clearly shorter for the November 16 event
than the December 18 Azgir explosion, so the November 16 event must be
at a closer distance than the Azgir region north of the Caspian.

Because this event is on the western edge of the south Caspian basin,
which is near mining districts and gas fields, the event may actually be a
large chemical blast or an unannounced PNE. The fact that it was reported
in the Soviet Earthquake Catalog means that it probably was not a Soviet
explosion. However, waveform P/S amplitude ratio discriminants would
have identified the event as an explosion. Perhaps this is a radiation pattern
effect for the earthquake or perhaps it is an unknown mine blast. However,
without other data for this event, it remains a very questionable and enig-
matic event for discrimination.
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2.4 Discussion

The crustal structure and deep sedimentary basins in the Caspian
have been explained as remnants of a much larger marginal seas which
were buried during the Mesozoic collision of the Arabian promontory and
the Eurasian margin (e.g., Zonenshain and Le Pichon, 1986). As revealed
by Russian DSS studies, the sediments in the basin have low velocity (about
3.5 km/sec) which overlie the basement rocks of much higher velocity (6.5
km/sec), the latter associated with the oceanic crust of the buried (Tethys)
ocean. The basement rocks on either side of the basin appear to have nor-
mal granitic velocities (6.0 km/sec) (Berberian, 1983).

The structure is the same as the Barents Sea and that the basin cap-
ture theory can explain the Lg blockage across this region. Whether or not
there is oceanic crust beneath the sedimentary basin is immaterial to the Lg
blockage. The large velocity contrast between the sediments of the con-
tained sedimentary basin and the surrounding crust, whether continental or
oceanic, results in the Lg waves being trapped in the basin and explains the
blockage of Lg across the southern Caspian Sea.

Also, this analysis suggests that a “crustal pinchout”, like those that
appear in the models of Kennett (1996) and Jih (1995), are not apparent in
the Barents Sea and Caspian Sea cross sections in Figures 1 and 9. Al-
though there are in fact perturbations in the Moho depth in these cross sec-
tions, which may in some way be related to the thick overlying sediments, a
substantial elevation of the Moho does not exist. Therefore, the Lg block-
age appears to originate primarily from the strong velocity perturbation in
the upper crust caused by the presence of the low-velocity sediments in the
Barents and South Caspian Basins along the path. The lower crust has little
effect in this region since it is comparatively less laterally heterogeneous
than the upper crust.

This study has indicated that the strength of recordings of the Sn and
Lg phases may be governed by a “shear-wave energy balance” condition
that seems to be conserved even in the case of Lg blockage or strong Sn
attenuation. This can best be seen in the comparison of Figures 5 and 6.
Whenever Lg is blocked, Sn appears to be strong (Figure 5) whereas the
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reverse holds true when Lg waves are not blocked (Figure 6). This sug-
gests that seismic events produce a certain amount of shear-wave energy
that propagates either as Sn or Lg, depending on the complexity of the
path. One possible mechanism for this is that when the shear waves propa-
gate into an enclosed sedimentary basin and are captured, they may be di-
rected into steeper paths closer to the vertical in the basin and the shear-
wave energy gets diverted downward into the lower crust to become Sr or
Sn-coda waves.

Also, these comparisons reveal that the same patterns exist for the
amplitudes of Pg and Pn which follow the patterns of Lg and Sn. That is,
Pg is blocked when Lg is blocked and Pn is strong and impulsive as is Sn.
When Lg is strong, Pg is also strong and Pr is weak and emergent when Sn
is weak or nonexistent. Usually, Pn is always observed, especially at high
frequency, which is also often the case for Sn. However, Sn arrives in the
higher-noise environment of the Pg coda which may explain why S is ap-
parently missing when Pg is strong.

Other studies (e.g., Kadinski-Cade et al, 1981) have argued that the
Sn phase is not observed for paths crossing these regions west, east, and
south of the Caspian Sea because of high anelastic attenuation (low Q). Be-
cause low Q in the mantle may be thermally activated by high temperatures
near the melting point solidus (Sato et al, 1989), there may be a correlation
between high Sr attenuation and measurements of high surface heatflow.

To investigate this, a rasterized heatflow database has been produced
for the study region around the Caspian Sea from the data for Pollack et al
(1993). Figure 13(a) shows the point heatflow measurements plotted on a
topographic map of the Caspian region. In Figure 13(b), this data has
been rasterized into an image using the “near neighbor” function of Ge-
neric Mapping Tools (GMT) package (Wessel and Smith, 1995). Figure
13(c) shows the cross sections through the rasterized heatflow database for
blocked (solid line) and unblocked (dashed line) Lg paths shown in Figure
13(b). Portions of both paths show high heatflow, generally above the
continental average of 65 mW m?, for the parts of the paths in the Cau-
casus and especially those which cross the middle part of the Caspian Sea.
However, for the “weak Sn “ paths, the heatflow values never
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comparison event in Figure 9.
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exceed 100 mW m™. However, extreme high values in excess of 100 mW
m™ for heatflow are found for the Caspian Sea path which is the same path
where Sn propagates efficiently. These heatflow values may be anomalous
and may be of variable quality, as pointed out by Pollack et al (1993). Ig-
noring the extreme high values of heatflow along the Caspian path, the av-
erage heatflow along the dashed-line path (efficient Sr) is not much differ-
ent than that alone the solid-line path. Thus, in this region, high surface
heatflow does not seem to correlate with regions of weak Sn.

These results suggest that the presence or absence of Sn in the Cas-
pian Sea region is controlled more by the energy balance between Sn and
Lg due to the propagation path blockage effects and to the strength of the
Pg coda level. Attenuation appears to be uniformly high for all phases for
paths from the Caucasus region as evidenced by the lack of high frequency
energy in the bandpass filter analysis of the Caucasus earthquake in Fig-
ure 10. However, there appears to be no strong evidence of unusually high
attenuation, due to high heatflow, which might explain the inefficient Sn
propagation for paths around the Caspian. The lack of observed Sn energy
may be due to how the total shear-wave energy budget of the seismic
sources is partitioned between the Sn and Lg modes of propagation. For the
Caucasus paths, the shear-wave energy balance goes mainly into Lg. The
lack of Sn may be caused by the fact that all the shear-wave energy propa-
gates as Lg rather than Sn. For paths which cross the Caspian Basin, the
energy balance concentrates the energy into Sn, since the Lg waves are
blocked.

The overall conclusion regarding discrimination is that earthquakes
and explosions are distinguishable on the basis of region P/S ratios, even in
cases when either Sn or Lg is blocked since they are not blocked at the
same time. Future research might be directed towards developing a total
compressional to shear wave energy ratio, such as for example,
Pn+Pg/Sn+Lg ratios, rather than just ratios involving one or the other
phase.
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3. CHARACTERIZATION OF REGIONAL PHASE
PROPAGATION IN THE MIDDLE EAST

The Middle East is a region of the world of key interest in monitor-
ing a CTBT or NPT. Countries in this region are believed to either have
untested nuclear weapons (Israel) or are aspiring to be nuclear nations
(Iran, Iraq, Pakistan). Although the primary motivation of the non-
proliferation treaties would be to prevent the development of nuclear
weapons to the test stage, the monitoring system must be capable of detect-
ing and identifying any potential “first test” which might occur.

Seismic identification in the Middle East is complicated by the fact
that, although there are many seismically active regions, there are no
known nuclear explosion tests, except for the close by Russian PNEs north
of the Caspian Sea which have been recorded by stations in the Middle
East. However, identification in the key regions of North Africa, the Le-
vant east of the Mediterranean Sea, and regions in Mesopotamia and the
Persian Gulf, must rely on the characterization of earthquakes and hypo-
thetical characterizations of potential nuclear explosions in the region.
Theoretical modeling has been proposed as a method for accomplishing this
(Goldstein, et al, 1996) although this would be problematic because there
would be no way to directly validate models for explosions in the regions
of the Middle East.

The approach taken in this study has been to empirically characterize
earthquake sources in the region with the intent of understanding the
propagation and source effects on recorded waveform features, in particu-
lar, regional P/S amplitude ratios. For discrimination purposes, the wave-
form features are compared with those from explosions in other regions of
the world which may have similar propagation paths to those in the Middle
East.

This section presents preliminary analysis of selected seismograms
from earthquakes in key regions of the Middle East recorded at the Mednet
station KEG and the IRIS station ABKT. The main focus has been on
earthquakes alone the Jordan-Dead Sea transform, Gulf of Agaba and Sinai,
Red Sea, and the Zagros thrust zone in western Iran. For the Mednet sta-
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tion KEG, waveforms were collected from the IRIS Data Center and were
only available for the years 1991 through 1994. The station ABKT came
on line in 1994. So, for some events in the Zagros, data was collected from
the IRIS Data Center for the same events recorded in 1994 at both KEG
and ABKT

3.1 Lg Propagation Barriers in the Levant

Figure 14 shows a map of propagation paths from a number of
earthquakes in Syria, Jordan, Israel, and Lebanon recorded at the Mednet
station KEG. Most of these events were located along a region defined by
the Jordan-Dead Sea transform fault system which separates the Arabian
and Sinai plates. Tectonically, the Dead Sea transform system has evolved
since mid-Cenozoic time as a result of the breakup of the Arabian plate
from the African plate (Ambraseys and Barazangi, 1989). The system in-
cludes the pull-apart basins of the Sea of Galilee and the Dead Sea and ex-
tends as far north to the Ghab and Yammouneh faults in Syria and south
into the Gulf of Agaba. The faulting processes along the system are basi-
cally left-lateral strike-slip although the fault movements are quite variable
from north to south (Walley, 1988; Ben-Avraham and Lyakhovsky, 1992).

The crustal structure in the region shown in Figure 14 is also
known be quite variable since the region formed from the convergence of a
number of displaced terranes (Ben-Avraham and Ginzburg, 1990). The
eastern Mediterranean Sea is underlain by the quaternary Levantine sedi-
mentary basin. Seismic refraction surveys of the basin (Ginzburg and
Folkman, 1980) have inferred seismic velocities of 1.5 to 2.1 km/sec in the
sediments in the eastern part of the basin extending to depths of 8 to 10 km
depth underlain by velocities of 4.1 to 4.5 km/sec. The adjoining Galilee-
Lebanon, Samaria, and Negev regions have very different crustal struc-
tures, perhaps thinner crust, and the seismic velocities in the upper crust
range from 3.7 to 6.2 km/sec. As shown in Figure 14, all the events oc-
curred east of the Levantine Basin, but the great-circle propagation paths
from the northern events in Syria and Lebanon to KEG cross the eastern
part of the Levantine Basin.
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Record sections for these events, with both filtered broadband (0.6 to
6 Hz) and high frequency (8 to 10 Hz) waveforms, are shown in Figure
15 and 16, respectively. The most notable observation in these plots is the
apparent blockage of Lg between 388 km and 488 km distance from KEG.
The blocked paths are associated with the paths that cross the Levantine Ba-
sin, as shown in Figure 14. Both plots show that Sn is non existent for the
shorter distance where Lg is observed but is strong at the greater distances
where Lg is blocked. Also, Pg apparently disappears when Lg does and the
Pn is more impulsive for the paths where S is strongest.

In this study, only events with NEIS magnitudes in excess of 3.5
were recorded with observable signals at KEG. The 11 events shown in
Figures 14 through 16 were the only events which produced observable
signals at KEG from 1991 to 1993. The high detection threshold may be a
result of low instrument magnification at KEG. Figure 15 shows that high
frequency regional signals propagate efficiently across these paths, except
for the blocked paths where Pg and Lg is not observed. However, even
along blocked paths, high-frequency Pn and Sn phases propagate with high
signal-to-noise ratio which indicates that attenuation is not extremely high
in this region.

These results are consistent with the observation in the Barents Sea
and Caspian Sea basins. The Pg, Lg blockage is associated with paths which
cross the sedimentary basin, and there is a tradeoff in energy between Pr,
Sn phases and Pg, Lg phases. Thus, basin capture, not high attenuation,
may be the cause of the blockages in this region. In spite of the blockages,
however, Pn and Sn phases are recorded at high frequency which means
regional P/S ratio discriminants can still be used in these regions.

3.2 Regional Phase Propagation from the Gulf of
Agaba/Suez/Northern Egypt Events

Figure 17 shows propagation paths for a set of events in the Gulf of
Agqaba and Suez recorded at KEG. These paths generally cross northern
Egypt and the Sinai. As discussed above, earthquakes in the Gulf of Aqgaba
are part of the southern extension of the Jordan-Dead Sea transform fault
zone. This part of the fault zone is much more active than the northern part
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and over 20 events were obtained from one year (1993) with body-wave
magnitudes between 3.7 and 4.7. The events plotted in Figure 17 are a
sample of events from this region.

Figures 18 and 19 show record sections of the waveforms in the
0.6 to 6 Hz and 8 to 10 Hz bands, respectively, for the earthquakes in Fig-
ure 16. The distances in this region range from 260 to 330 km. The seis-
mograms show strong Lg and Pg signals, emergent Pn signals, and no ap-
parent Sn signals. As in the case of the southern paths from the events to
the north of KEG in Figure 14, the seismic energy in this region propa-
gates primarily as Pg and Lg modes at very high frequency. The observa-
tion of high-frequencies in the region indicates relatively low attenuation
overall. However, the lack of Sn energy may be because the total energy
budget for shear waves propagates as Lg and little or no energy is parti-
tioned into the Sn phase.

3.3 Water Column Bounces in the Gulf of Aqaba

One interesting observation for many of the events in the Gulf of
Agaba is that their spectra show evidence of spectral scalloping in the Pn
and Pg phase but not so much in the Lg phase. Figures 20 shows exam-
ples of spectra for two earthquakes which exhibit this character. Figure
21 shows cepstra computed from the spectra which exhibit cepstral peaks
associated with the spectral scalloping. The time delay for this peak is about
0.3 seconds and may be caused by reflections in the water column of the
Gulf of Agaba. As shown, a two-way travel time of 0.3 seconds is consis-
tent with a water column depth of about 228 meters, which is close to the
actual value from the bathymetry data for the Gulf of Aqaba.

Spectral scalloping features like this are often observed in mine
blasts on land and are caused by ripple firing (Baumgardt and Ziegler,
1988). Also, spectral scalloping has been observed in presumed underwater
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blasts by Gitterman and Shapira (1993) and Baumgardt and Der (1996). In
these studies, spectral scalloping was observed in all phases from the blasts,
including Lg. The fact that spectral modulations are observed for earth-
quakes in the Gulf of Agaba is interesting and significant in that this feature
has usually been regarded as an indication of ripple fired mineblasts and
underwater explosions.

The fact that the spectral scalloping is mainly observed in the region
P phases, and not the Lg, might be explained by the way in which these
phases are generated. The earthquakes are presumed to be crustal and 1m-
mediately below the region covered with water. Thus, the upgoing P
waves, both Pn and Pg, couple directly into the water column as acoustic
waves, and the water column reflections would couple in directly to the Pn
to Pg coda. The S type phases do not, except by mode conversion to P.
Since all this occurs in the source region, and Lg primarily builds up along
the path, the near source water reflections appear primarily in the early ar-
riving Pn and Pg type phases.

In terms of discrimination, features of this kind would be an indica-
tion of underwater earthquakes and can be distinguished from underwater
blasts by the lack of spectral scalloping in the Lg phase. In future research,
the degree to which these features show up for the Gulf of Agaba earth-
quakes (i.e., the number of events, where they are located) will be investi-
gated more fully. Moreover, it may be possible to more precisely estimate
the location and the depth of shallow earthquakes in this region, given
knowledge of the bathymetry of the Gulf, by estimating the depth of the
water column over the earthquake.

3.4 Red Sea/Ethiopia Earthquakes

Figure 22 shows the locations of seismic events, located in Ethiopia
and the southern Red Sea region, whose propagation paths to the station
KEG cross the Red Sea region. A total of seven events could be obtained
from the IRIS Data Center with observable signals at KEG in the 1991 and
1994 time frame. The body wave magnitudes for the events ranged from
4.1 to 5.4. Generally, no events with magnitudes less than 4.0 produced ob-
servable signals at KEG.
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Geologically, the Red Sea region is known to be an incipient spread-
ing center, and studies of distant events crossing this region have indicated
weak Sn propagation. It has been generally assumed that high attenuation in
the region would kill the propagation of Sr, and probably Lg. Regions of
upwelling from the aesthenosphere have been inferred from gravity data
(Makiis et al, 1991), and Barazangi et al (1996) have inferred a low den-
sity aesthenosphere under the region which they suggest explains why no
Sn or Lg phase crosses the Red Sea.

Figure 23 shows a broadband filtered (0.4-4.5 Hz) record section
of the waveforms recorded from the earthquakes in Figure 22. The dis-
tance ranges for these events are quite large ranging between 1898 to 1921
km. In spite of the large distances and the fact that the paths for these event
either cross or pass near the Red Sea to the west, strong Lg energy was re-
corded for all the events. Also Pn is observed although it is much weaker
than the Lg. No Sn was observed for these paths. Clearly, the Lg propa-
gates at a velocity near 3.5 km/sec across the Red Sea as is observed in
other continental region.

It should be emphasized that, although strong Lg signals do in fact
propagate near and across the Red Sea, the signals are low-frequency.
Above 1 Hz, the signals are below noise level. Moreover, the Pn signal ob-
served in Figure 23 is also very low frequency and is generally not ob-
served above 0.5 Hz.

These results show that the crustal structure of the Red Sea does not
impede Lg propagation. However, the low frequency character of the sig-
nals and the lack of Sn energy probably relates to high attenuation in the
region. Also, high attenuation may explain the high detection threshold for
events in the region. Thus, from the point of view of discrimination, large
Lg waves can identify earthquakes in this region. Nuclear explosions in the
same region would probably excite much stronger Pn energy, although it
would likely be low frequency due to attenuation. High frequency P/S ratio
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discriminants cannot be applied to events in this region using just the sta-
tion KEG.

3.5 Observations of Zagros Earthquakes

Figure 24 shows the locations of earthquakes in the Zagros region
that were recorded at the stations KEG and ABKT. As shown, many of the
events were recorded at both stations. A total of 29 events were collected
from IRIS for KEG between the dates for 1993 and 1994 and 54 events for
ABKT between 1994 and 1995. The overlap year of 1994 when events
were collected at both stations included a total of seven events. The body-
wave magnitudes for these events ranged from 4.7 to 4.9. The lowest body-
wave magnitude for which reasonable signals were recorded was about 4.7
for both KEG and ABKT.

The Zagros mountains has been characterized tectonically as colli-
sional zone between the Arabian and Eurasian plates. The recent Miocene
period of deformation in the collisional zone has been indicated by the
presence of an active volcanic belt and numerous thrust mechanism earth-
quakes (Ni and Barazangi, 1986). Most of the events in Figure 24 appear
to be associated with the Zagros thrust belt.

Figure 25 shows a plot of the waveforms from the Zagros recorded
at KEG in distance order. These waveforms have been prefiltered from 0.5
to 4.5 Hz. For most of the events in the distance range of 1500 to 2000 km,
strong Pn and Lg waves were produced. No Sn energy above 0.5 Hz was
apparently produced. As shown in Figure 24, the Lg wave seems to dis-
appear beyond a distance of about 2000 km.

Recordings of waveforms at ABKT are shown in Figure 26 in the
form of a record section. The line shows the expected moveout of Lg.
Strong Pn and coda waves are produced over the distance range of 1016 to
1262 km. However, Lg waves are relatively weak.

Comparison of Figures 25 and 26 definitely shows differences in
the relative excitation of Pn and Lg. Even though the distances from the
Zagros earthquakes to the ABKT station are smaller than those to the KEG
station, Lg appears to be stronger than Pn at KEG out to 2000 km whereas
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the reverse is true for the ABKT station. A more direct illustration of this
difference is shown in Figure 27, which shows two waveforms in record
section from same event. The Pn -to-Lg amplitude ratio at ABKT at 1066
km distance exceeds 1 whereas at KEG, at the much greater distance of
1703 km, the Pn -to-Lg amplitude ratio is less than 1. KEG overall has a
much lower signal-to-noise ratio than ABKT because of the greater propa-
gation distance. However, the difference in the relative Pn and Lg ampli-
tudes is quite striking and the reverse of what might be expected.

One possible conclusion of this study is that Sn is blocked to ABKT
and Lg is partially blocked, and the variations in the Pn/Lg amplitude ratio
for the paths to ABKT and KEG are due to propagation path differences.
However, Rodgers et al (1996) have also studied propagation of Sn and Lg
from Zagros events to ABKT and concluded that Sx propagates ineffi-
ciently along all paths but found mixed results for Lg. Some paths for Lg
propagation through Iran were efficient, others inefficient, and often, effi-
cient and inefficient paths overlapped. Similar mixed results for paths to
other stations on Iran were reported by Kadinski-Cade et al (1981). These
mixed results, and the azimuthal variations observed in this study, suggest
that source effects might be an alternative explanation. These ideas are dis-
cussed in more detail in the next section.

3.6 Discussion - Causes of Regional Blockage and Attenuation
in the Middle East

In the previous discussion of earthquakes in the Middle East re-
corded at KEG and ABKT, three major observations were made:

(1) Lg waves are blocked in the Eastern Mediterranean

(2) Lg propagates efficiently across southern Israel, Sinai, and
northern Egypt

(3) Strong Lg waves are observed from the Red Sea region

(4) Sn and Lg relative excitation tradeoff. Also, Pn and Pg relative
excitation tradeoff.

(5) Azimuthal difference in Prn/Lg relative excitation for Zagros
Thrust events.
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This section discusses possible explanations for these observations, based on
available information about the geology and geophysics of the region.

3.6.1Lg Blockage By Basin Capture In the Levantine Basin

Figure 28 shows comparisons of propagation paths from events
along the northern Jordan-Dead Sea transform (dashed white lines) and the
southern extension of the transform in the Gulf of Aqaba (solid black
lines). These paths are plotted on gray-scale contour maps of basement
depth and Moho depth in Figure 28(a) and (b), respectively. As shown,
the eastern Mediterranean Sea, or the Levantine Basin, is underlain by
thick sediments and a thinning of the crust.

Figure 29(a) and (b) shows a direct comparison of the cross sec-
tions for all the paths in Figure 28(a) and (b). The dashed-line cross
sections correspond to the dashed line northern paths in Figure 29 and the
solid-line cross sections correspond to the solid-line paths in Figure 29.
The dashed-line cross sections show sediment depths extending to 15 km
and Moho depths thinning from 35 km to 20 km. Underneath southern Is-
rael, the Sinai, and northern Egypt, there are no sediments and the crustal
thickness is relatively constant at about 35 km.

Thus, a very apparent “pinchout” in the crust exists in the Levantine
Basin. As discussed above, the seismic velocities in the sediments of the Le-
vantine basin are very low, ranging from 1.5 to 2.0 km/sec, and they over-
lie much higher velocities of the lower crust and upper mantle. This sharp
velocity contrast between the lower velocities in sediments of the Basin and
the surrounding higher velocity blocks, which include thinning crust, re-
semble the conditions observed in the Barents Sea and Caspian Sea Basins.
Thus, the “basin capture” mechanism may explain the extinction of Lg for
the northern paths to KEG which cross the Levantine Basin. Also, the
“crustal pinchout” pattern, which was modeled by Jih (1995), also exists.
However, the crustal pinchout may be secondary to the primary effect of
the strong velocity contrasts in the upper crust and the basin capture
mechanism.
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Also, Figures 15 and 16 may show additional evidence of the
“shear-wave energy balance hypothesis” discussed earlier in connection
with the Barents and Caspian Sea; i.e., strong Sr waves are observed when
Lg is apparently blocked and visa versa. Moreover, the lack of strong Sn
waves from the Gulf of Aqaba may be a further manifestation of this ef-
fect. Also, as we have pointed out earlier, there is a corresponding tradeoff
in Pn and Pg excitation which accompanies the Sn and Lg tradeoff. These
results again point to the possible development of a Pn+Pg/Sn+Lg ampli-
tude ratio discriminant where the relative total compressional and shear
wave energy budget should be used in discrimination.

3.6.2 Comparison of Heat Flow in the Levant and Red Sea
Regions

Figure 30(a) shows a shaded relief map of the rasterized heatflow
database for the Middle East taken from Pollack et al (1993). The same
propagation paths to KEG from all the earthquakes Jordan/Dead-Sea/Guli-
of-Aqaba, as well as those which run adjacent to or cross the Red Sea, are
plotted. Figure 30(b) shows heatflow cross sections for all the northern
paths, and Figure 30(c) shows the heatflow cross sections for the paths
near the Red Sea. For the northern paths, the dashed-line cross sections of
heatflow are generally less than 75 mW/m?, slightly above the global conti-
nental average of 65 mW/m’. The Gulf of Agaba paths seem to have some-
what higher heatflows, which range between 75 and 100 mW/m>.

For the paths along the Red Sea, the heatflow values are much more
variable, although the expected higher values are found. Generally, at dis-
tances closer than 400 km, the heatflow is less than 100 mW/m’. However,
beyond this distance, much higher heatflow values appear which are near
the oceanic average heatflow of about 101 mW/m’ (Pollack et al, 1993).
The variations in the heatflows along these paths are probably not signifi-
cant, given the uncertainties of the observed heatflow data which go into
this database. However, the generally observed higher values of heatflow
along these paths are consistent with the fact that the Red Sea is considered
to be an incipient spreading center with associated upwelling of hot mate-
rial into the crust from the aesthenosphere. Higher temperatures
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usually produce higher seismic Q, and this may explain the lack of high
frequencies and the high magnitude detection thresholds for events whose
paths cross this region.

We thus conclude overall that high heatflow regions cause high
anelastic attenuation. However, this does not necessarily block Lg, at least
not at low frequency (<1 Hz). The lack of Sn may be a direct result of the
elevation of the aesthenosphere and the higher attenuation in the lower
crust and upper mantle. However, for the paths crossing the Levantine Ba-
sin, where heatflows are relatively high, high attenuation does not kill Sn
even though Lg is blocked. Again, the lack of Sr may be because all the
shear-wave energy propagates as Lg.

3.6.3 Zagros Azimuthal Patterns - Propagation Difference
or Radiation Patterns?

For the observation of the azimuthal differences in the excitation of
Pn and Lg from the Zagros, two possible explanations are considered,
propagation-path differences and source radiation patterns.

Figure 31 shows a comparison of the great-circle propagation paths
for the signals shown in Figure 27 from the common Zagros earthquake.
The shaded maps in Figure 31(a) include the topography (top), depth to
basement (middle), and depth to Moho (bottom), taken from the Eurasia
data base from Cornell (Fielding et al, 1992). Figures 31(b) show the
cross sections for the Zagros-to-KEG and Zagros-to-ABKT paths, respec-
tively. The path to the ABKT stations crosses the central part of Iran, in-
cluding the Lut depression (Giese et al, 1983) where there are fluctuations
in both depth to basement and depth to Moho, although these variations are
not extreme. The sediments in the Lut depression, for example, only reach
5 to 10 km, although there are sudden changes in sediment depth. The
Moho depth shows little variation. The path from the Zagros to KEG also
shows variations in depth to basement and depth to Moho, but the varia-
tions are more gradual. The underlying sediments of the Zagros mountains
are mainly platform cover and shelf type (Berberian and King, 1981). To
the west, the sedimentary rocks are thickest in the
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Mesopotamian Fordeep, at about 13 km, and gradually thin to the west into
the Arabian Shield, where there are no sediments (Beydoun, 1989). Also,
for this path, the Moho depth exhibits little variation.

Comparison of these two propagation paths suggests that the path to
ABKT has more complicated near-crustal variations in sediment thickness.
The “basin capture” idea may be invoked for the Lut depression as an ex-
planation for the “blockage” of Lg. The path to KEG passes through re-
gions of thick sediments, but the sedimentary basin thins gradually to the
west. Blockages of Lg are associated with propagation through completely
contained basins, not gradually thinning basins like the Mesopotamian For-
deep.

An alternative explanation is that the differences in Pn/Lg ratio for
the two paths may be due to differences in the compressional and shear
wave radiation patterns from earthquakes in the region. This idea is illus-
trated in Figure 32. Figure 32(a) is a reproduction of Figure 24 that
shows the great-circle paths from all the earthquakes to the two stations.
For comparison, Figure 32(b) shows source mechanisms for Zagros
earthquakes studied by Ni and Barazangi (1986) plotted on a tectonic map
of the Zagros thrust belt. Note that these are not the same events, i.e., the
Ni and Barazangi (1986) events were earlier than those in this study. How-
ever, they show that, with a few exceptions, a predominant thrust source
mechanism for earthquakes in the Main Zagros thrust zone. The strike of
the focal planes tends to parallel the trend of the Zagros mountains, al-
though there are variations in strike. The pressure axis tends to directed
vertically, or somewhat the northeast or southwest.

The two bold arrows in Figure 31(b) show the two approximate
directions to the two stations. With some exceptions, the path to KEG tends
to parallel strike or fall at an oblique angle to strike of the thrust mecha-
nism of the earthquakes. The path to ABKT tends to fall more normal to
the strike. The maximum P wave excitation for the thrust mechanism, as-
suming a double-couple, would tend to be directed near the vertical. If the
takeoff angle relative to the vertical of Pn waves from the sources in the
Zagros is smaller than 45 degrees, i.e., close to the pressure axis, the ra-
diation will strongest for the compressional waves and weaker
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for the shear waves. Thus, if Lg predominantly comes from shear waves
taking off at steep angles, the thrust source mechanisms may tend to under-
excite shear waves to the northeast and hence Lg may be underexcited. The
path to KEG may be such that the Pn takeoff angles are closer to one of the
nodal planes and the shear wave excitation to the west may be stronger.
Thus, the variation in Pn/Lg ratios apparent in Figure 27 may be due to
the differences in radiation patterns of P and S waves at high frequency.

The source radiation pattern explanation assumes that source mecha-
nisms of the Zagros earthquakes in this study are similar to those in Ni and
Barazangi (1986) and that radiation patterns of point double-couple mecha-
nisms are not canceled out by scattering at high frequency. A number of
the earthquakes in this study were large enough to produce CMT solutions,
so the first assumption can be checked. As for the second, it should be
noted that the signals in Figures 25, 26, and 27 are low frequency (< 1
Hz), which may be low enough that radiation patterns may still be ob-
served. A confirmation of this idea must await closer examination of the
actual source mechanisms of these events and evaluation with synthetic
seismograms.

3.7 Discriminants for Middle East Earthquakes - Inter Region
Comparisons with Explosions

The earthquakes recorded at KEG and ABKT were processed
through ISEIS to extract frequency-dependent regional P/S ratios and com-
pared with events in other regions. The amplitude ratios, Pn/Sn and Pr/Lg,
were computed for all the events were computed from RMS envelopes
shown in Figure 33. These envelopes were computed by averaging the
root-mean-square (RMS) amplitude in adjacent 1 second windows shifted
down the traces. Both the unlogged and logged envelopes were computed,
as shown in Figures 33(a) and (b), respectively. The time-picks for the
phases, picked on waveforms, are shown on the envelope traces in Fig-
ure 33. In the case of the Gulf of Agaba events in Figure 32, only Pn,
Pg, and Lg were picked. The maximum RMS
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amplitudes on each of the envelopes were then computed for each of the
phases in each of the nine frequency bands shown in Figure 33. From
these envelope traces, amplitude ratios were computed.

Figure 34 shows plots versus distance of 6 to 8 Hz Pn/Sn ratios for
the earthquakes on the Dead Sea transform where the Lg wave was
blocked. Also plotted are ratios for Kola Peninsula mine blasts and Novaya
Zemlya earthquakes. Of course, the Kola/Novaya Zemlya source region is
much different from the Middle East, both tectonically and geophysically.
However, they are similar in that both the Novaya Zemlya and Dead Sea
transform earthquakes had blocked Lg. The curve in Figure 33(a) is the
distance correction trend for Pn/Sn determined by Sereno (1991). The
trend clearly increases distance, and Figure 34(b) shows the same data
but with the Sereno (1991) distance trend removed. The distance corrected
points for the Dead Sea transform earthquakes clearly fall below both mine
blasts and nuclear explosions, indicating that Middle East earthquakes pro-
duce much stronger Lg waves, relative to Pn, than do blasts in Russia re-
corded in Scandinavia

Finally, Figure 35 shows plots versus distance of Pn/Lg amplitude
ratios, corrected for distance, for the Zagros earthquakes recorded at both
KEG and ABKT compared with the Kazakh nuclear explosions and Chinese
earthquakes recorded at WMQ, studied by Baumgardt and Der (1995).
These two regions may be more similar tectonically. However, the ABKT
waveforms had blocked or underexcited Lg waves from the Zagros. In the
2 to 4 Hz band in Figure 35(a), the ABKT ratios at around 1000 to 1200
km distance have high scatter and higher ratios that fall close to those of
nuclear explosions at Kazakh. The KEG recordings of the same region
earthquakes have somewhat lower values of ratios, which seems consistent
with the earlier comparison of the waveforms. Lower ratios indicate large
Lg relative to Pn. However, as a group, the KEG and ABKT ratios are
close. At higher frequency, 4 to 6 Hz, the earthquake points clearly fall
well below the nuclear explosions and are more consistent with the Chinese
earthquakes.
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These results indicate that, for the unblocked paths, earthquakes in
the Middle East can be discriminated from blasts in other regions. How-
ever, at low frequency, the results are more problematic, particularly for
blocked paths. Because of the high attenuation in the Middle East, high fre-
quency discriminants may not be usable. Generally, it appears that, at low
frequency, earthquakes in the Middle East produce much stronger shear
energy, either Sn or Lg, than do nuclear explosions in other regions. It is
likely that if a nuclear explosion occurred in the Middle East, it may also
underexcite shear waves relative to compressional waves even at low fre-
quency. The only problematic discrimination would be earthquakes along
blocked paths, such as Zagros to ABKT. However, large shear waves
would still be observed for the other station, KEG.
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4. SUMMARY AND CONCLUSIONS

The systematic seismological monitoring of the CTBT and NPT will
likely encounter the requirement to characterize events in parts of the
world where there is limited historical data for nuclear explosions or
similar type sources. The Middle East poses a particular challenge to the
monitoring system because of the high seismicity of the region, the com-
plex propagation conditions, and the currently limited quantity of regional
seismic data for small events in the region. Because of the presence of
countries in the Middle East that aspire to become nuclear powers, a capa-
bility must be developed to reliably identify possible “first test” nuclear ex-
plosions in these countries. The approach taken in this study to address this
problem has been to characterize the effects of complex heterogeneous
crustal structure on regional P/S ratio discriminant feature, using crustal
structure information available from GIS databases, and to compare these
features of earthquakes in the Middle East with nuclear explosions and
mine blasts in other regions. Correct discrimination between earthquakes
and any possible “first test” nuclear explosions must account for the effects
of differences in geology and geophysics of the Middle East and the other
regions containing historical nuclear explosions.

The well-recognized problem of “Lg blockage” was reexamined in
terms of the effect on discrimination capability in the Middle East. Fol-
lowing up on earlier work on Lg blockage in the Barents Sea, where the
Lg was found to be blocked by the Barents Sedimentary Basin, blockages
of similar origin have been found in the Middle East in the Caspian Sea
north of Iran and in the Leventine Basin of the Mediterranean Sea. Com-
parison of crustal cross sections, derived from GIS databases, for blocked
and unblocked paths, it was found that Lg blockage is associated with the
presence of an enclosed sedimentary basin along the path, and that this
feature may be a predictor of Lg blockage. Lg blockages in these regions
can be explained by the “basin capture” idea, where the shear-waves com-
posing the Lg wavetrain are captured by the lower velocities of the sedi-
ments in the basins and perhaps diverted into other propagation modes,
such as Sn, by the laterally heterogeneous velocity variations. A corre-
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sponding crustal thinning does not seem to be required to block Lg, since
no such thinning appears in the Barents and Caspian Sea Basins.

Obviously, P/Lg amplitude-ratio discriminants cannot be used if Lg
is blocked by the propagation path. However, this study has shown that
when Lg is blocked, Sn has greater energy. In fact, earthquakes can be
identified on the basis of small P/Sn amplitude ratio when weak or no Lg is
recorded. Often, however, when Lg propagates with high energy, Sn is not
well observed. Other studies have usually explained inefficient S»n propaga-
tion as being caused by high anelastic attenuation. However, this tradeoff
between Sn and Lg amplitudes may be explained by the “shear-wave energy
balance” idea in which seismic source produces a certain amount of shear
wave energy that must either propagate as Sn or Lg modes. If one mode is
blocked, the shear-wave energy will be partitioned into the other mode.

Moreover, a similar partitioning of energy has also been observed
for Pn and Pg; i.e., when Pg is strong, Pn is weak and visa versa. Emer-
gent Pn arrivals are observed when Sn is weak or not recorded above the
Pg coda “noise.” Whatever blocks Lg also blocks Pg and compressional-
energy gets partitioned between Prn and Pg in the same way in which shear-
wave energy is partitioned between Sn and Lg. Seismic events can still be
identified on the basis of the relative amount of total compressional (Pn
and Pg) and total shear wave energy (Sn and Lg). Thus, a total P/S am-
plitude ratio discriminant is now being considered.

This study has also revealed the presence of strong, low-frequency
Lg waves propagating around the Red Sea, a region that was previously
thought to block Lg. Also, Pn was extremely weak for earthquakes in the
region and in fact non existent at frequencies above 0.5 Hz. The Lg waves
are also limited in bandwidth to below 1 Hz. The attenuation of high-
frequency signals in the Red Sea region may be caused by upwelling of
high-temperature, low Q aesthenospheric material in the incipient spread-
ing center as indicated by higher heatflow in the region. However, high at-
tenuation does not kill low-frequency Lg waves from the earthquakes.

Finally, earthquakes in the Zagros Mountains indicated azimuthally
dependent patterns in Pn/Lg amplitude ratio which may be due either to
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differences in Lg blockage along different paths or source mechanism ef-
fects. It has usually been assumed that source radiation pattern effects
would be washed out at high frequency by scattering in laterally heteroge-
neous media. However, as in other regions of the Middle East, the regional
signals observed from the Zagros were found to be low-frequency, which
may be more affected by radiation patterns. Also, no Sn phases were ob-
served in either direction. Since this study has suggested that both S»n and
Lg have usually not been observed to be blocked at the same time, the fact
that both Sn and Lg are weak in a certain direction points to a possible
source radiation-pattern cause. Further study of the source mechanisms of
these events and modeling studies are planned to investigate this idea fur-

ther.

The Zagros results point out the need for multiple station recordings
of earthquakes in order to confidently identify them. Most of the Zagros
earthquakes could be identified on the basis of high Pn/Lg amplitudes at
KEG, except for the events in the southern most part of the range, where
the Lg waves were not observed (See Figure 25, where there is strong Lg
attenuation). Beyond about 2400 km, attenuation appears to kill the propa-
gation of most shear waves at high frequency in this region. Thus, having
two stations recording the Zagros earthquakes would identify most of
them, whereas if only the ABKT station were available, positive identifica-
tion of the earthquakes may not be possible on the basis of Pn/Lg amplitude

ratios alone.

Another example of where more than one station would be helpful is
the case of the November 16, 1978 earthquake in the Caspian region re-
corded at ILPA. The ILPA array element, IR1, recorded waveforms that
looked very explosion-like because of the high Prn/Sn ratios and that both
Pn and Sn were large at high frequency, which is uncharacteristic of earth-
quakes in the region. However, the weak Sn waves and strong Pn waves
from this event may have been caused localized path blockages of S or ra-
diation pattern effects that excite strong Pn and weaker Sn waves in the di-
rection of ILPA. Having another station that recorded this event at a dif-
ferent azimuth than the ILPA azimuth would have been very helpful in its
identification. A single observation of high Pn/Sn ratio, which is what was
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found for the ILPA IR1 recording, is not sufficient information to identify
the event as an explosion. Additional observations of high Pn/Sn ratios
would still be insufficient to positively identify the explosion, although the
probability of explosion might be increased. On the other hand, a single
station recording a larger Sn than Pn at high frequency at a different azi-
muth would be sufficient to identify the event as an earthquake with high
probability.

In spite of tectonic complexity of the regions studied in this report
and all the variations of Sn and Lg excitation, comparison of most of the
Pn/Sn and Pn/Lg amplitude ratios features of the Middle Eastern earth-
quakes with those of nuclear explosions in Russia recorded in Scandinavia
and China showed that the Middle Eastern earthquakes usually had lower
ratios than nuclear explosions. However, the question of whether a nuclear
explosion near the Jordan/Dead Sea transform, in the Red Sea region or in
the Zagros Mountains, would look like explosions at Kazakh and Novaya
Zemlya, recorded at comparable distances, remains unanswered. If propa-
gation path blockages are the only effect, then it is likely that nuclear ex-
plosions in the Middle East should clearly be discriminated from earth-
quakes, since any blockage effects should be the same for explosions as for
earthquakes. Since most earthquakes observed in the Middle East have
some kind of large shear excitation, either Sn or Lg, compared with some
kind of compressional wave excitation, either Pn or Pg, any nuclear explo-
sion in the regions studied so far should be identifiable.

The overall conclusion of this study is that discrimination between
explosions and earthquakes in the Middle East should be feasible assuming
adequate signals are detected. However, perhaps the greatest discrimination
problem for small events will be detection of weak signals. The station in
Egypt, KEG, appears to be adequate for monitoring within 600 km with
high frequency discriminants, which covers most of Israel, Saudi Arabia,
and other parts of northern Africa. However, the lowest magnitude in this
distance range for which usable signals were recorded at KEG was body-
wave magnitude of 3.5. This is well above the threshold of Scandinavian
arrays and the desired threshold for monitoring a low yield CTBT, which
is on the order of 2.5. The proposed LUXESS array may improve the de-
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tection threshold with improved instrumentation, better deployments of
sensors, and the use of beamforming methods to lower detection thresh-

olds.

However, even after the LUXESS array is installed, discrimination
in other critical areas, such as Iraq and Iran, may be problematic if high-
frequency discriminants are required because high frequency signals above
1 to 2 Hz are strongly attenuated. Although large earthquakes in regions
like the Zagros thrust produce large shear waves, large nuclear blasts can
also produce large shear waves at low frequency. Small nuclear explosions,
including possible decoupled explosions, may require higher frequency dis-
criminants for confident identification (Bennett et al, 1995). As this study
has shown, important phases, such as Pr can be eliminated by anelastic at-
tenuation at high frequencies. Thus the most important challenge to dis-
crimination in the Middle East may not be blockage of certain regional
phases, such as Lg, but rather the elimination by anelastic attenuation of all
high frequencies in certain important phases. Future assessments of net-
work performance for discrimination in critical regions like the Middle
East need to include the detectability of high-frequency signals above and
beyond the usual low-frequency detection thresholds.
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